

Synthesis of [N, N'-Bis(5-benzoyl-4-phenylthiazol-2-yl)-N, N'-bisbenzyl]ethane-1, 2-diamines

S Asha^a, S L Manju^b, N S Pradeep^c, V George^d & K N Rajasekharan*^a

^aDepartment of Chemistry, University of Kerala Trivandrum 695 581

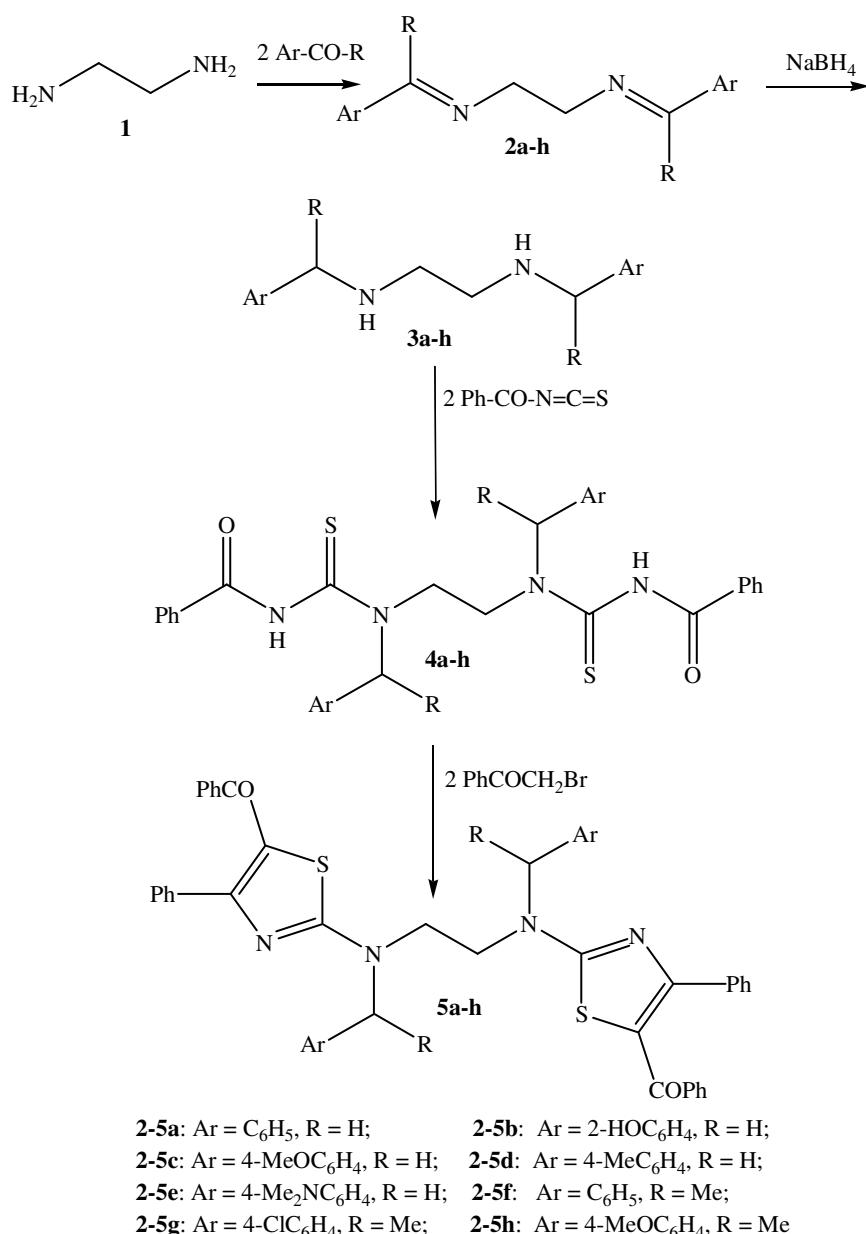
^bOrganic and Inorganic Chemistry Division, VIT University, Vellore 632 014

^cMicrobiology Division, ^dPhytochemistry and Phytopharmacology Division,

Tropical Botanic Garden and Research Institute, Pacha-Palode, Trivandrum 695 562 Kerala, India

Email: rajkn_1951@yahoo.com

Received 31 March 2008; accepted (revised) 29 August 2008


Synthesis of [N,N'-bis(N-benzoylthiocarbamoyl)-N,N'-bis(benzyl)]ethane-1,2-diamines **4a-h**, their cyclization to [N,N'-bis(5-benzoyl-4-phenylthiazol-2-yl)-N,N'-bisbenzyl]ethane-1,2-diamines **5a-h** by reaction with phenacyl bromide and the results of antibacterial activity assay of **4a-h** and **5a-h** are reported.

Keywords: Bisthiazole, antibacterial activity

The concept of the multivalent mode of docking interaction involving one ligand binding simultaneously to more than one binding domains on the biomacromolecule has been the basis of a new trend in drug discovery lately. In a recent review¹ many examples of enhanced bioactivity of dimeric drug molecules, such as yohimbine and vitamin D homodimers, antiasthmatic salmetrol heterodimer, capable of multivalent binding have been cited. Nature also resorts to such multiple binding interactions to increase the overall strength of interactions between a ligand and its receptor. Compounds bearing more than one thiazole units also exhibit significant biological activities. We noted that, though a few reports exist on the synthesis of 5,5'-bisthiazoles² and 2,2'-bithiazoles,³ the synthesis of bis-2-amino-5-ketothiazoles are much less investigated. Further, the aminothiazole moiety is a more biocompatible and better lipophilic, but a less acidic bioisosteric replacement for a phenol group. It is a valuable pharmacophore unit, present in many recent examples of bioactive compounds including thrombotic⁴ and bacterial DNA-gyrase⁵ inhibitors that are potentially useful in cardiac and cancer treatments. Hence, we have now sought to access homodimeric daminoketothiazoles based on monomeric 2,4-daminoketothiazoles, the cytotoxicity

of which we have reported recently⁶. Thus, prompted by the several recent reports on biologically active bisheterocycles⁷ including bisthiazoles⁸ and by our interest in the synthesis of biologically active 2-aminothiazoles⁹, we now report the synthesis of bis-2-amino-5-ketothiazoles. With our interest in the development of a viable access to bis-2-amino-5-ketothiazoles that consisted of two thiazole units linked together by a short bridge, we reasoned that such a bisthiazole system may be obtained in a multistep transformation starting from a bisacylthiourea. Thus, N,N'-dibenzylethane-1,2-diamines **3a-h**, accessed by the reduction of the Schiff's bases **2a-h** prepared from ethane-1,2-diamine **1** and aldehydes, were reacted with benzoyl isothiocyanate to obtain hitherto unreported bisacylthioureas **4a-h** (**Scheme I**).

The reaction of a typical example **4a** with a halomethyl reagent in a [4+1] ring construction approach to bisthiazoles was first investigated. As the first example, [N,N'-bis(N,N'-benzoylthiocarbamoyl)-N,N'-bisbenzyl]ethane-1,2-diamine **4a** was reacted with phenacyl bromide in 1:2 molar ratio in acetone. The reaction afforded a product **5a** with molecular composition C₄₈H₃₈N₄O₂S₂ from elemental analysis. In its IR spectrum, there were no bands assignable to N-H groups. Further, in the place of the strong v_{C=O}

Scheme I

band at 1635 cm⁻¹ seen in the precursor bisthiourea **4a**, the product obtained **5a** exhibited only a moderately strong vC=O band at 1600 cm⁻¹. The ¹H NMR spectrum of the product **5a** showed a set of three multiplets in the region δ 7.05-7.45, which together accounted for thirty hydrogens, thereby indicating the incorporation of six phenyl rings in the product. The ¹H NMR spectrum also showed a four-hydrogen singlet at δ 4.71, which suggested the presence of two benzylic groups. Another such singlet at δ 3.88 further indicated the presence of a -NCH₂-CH₂N- group. The FAB MS of **5a** showed a MH⁺ peak at m/z

767 fragment ions at m/z 91 and 105 indicating the presence of benzyl and benzoyl units in the molecule. On the basis of these evidences, the product is considered to be *N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bisbenzylethane-1,2-diamine **5a**. A similar reaction sequence was adopted to prepare seven other examples of such bisthiazoles **5b-h**.

To assess the bioactivity of the bisthioureas **4a-h** and the bisthiazoles **5a-h**, these were screened for their antibacterial activity against nine bacterial strains: *Serratia marcescens*, *Escherichia coli*, *Klebsiella pneumoniae*, *Proteus vulgaris*, *Salomo-*

Table I — Antibacterial activity of the bisthioureas **4a-h** and bisthiazoles **5a-h**

Compd	Bacterial strain ^a vs Activity [#]								
	I	II	III	IV	V	VI	VII	VIII	IX
4a	8	7	7	8	8	10	7	8	10
4b	9	9	9	6	7	6	6	7	8
4c	6	NA	NA	8	NA	7	NA	6	6
4d	6	8	8	7	8	NA	6	NA	NA
4e	7	9	9	7	9	NA	7	NA	8
4f	6	11	11	6	6	NA	6	7	7
4g	NA	11	11	6	7	7	6	7	7
4h	6	11	11	NA	NA	NA	6	7	6
5a	8	8	8	7	7	11	NA	8	8
5b	8	7	10	7	7	7	6	NA	9
5c	6	9	NA	8	6	NA	NA	NA	8
5d	7	9	6	7	NA	NA	NA	6	9
5e	6	6	NA	7	NA	NA	6	NA	7
5f	9	9	10	7	9	NA	NA	6	8
5g	10	9	11	8	9	NA	8	NA	7
5h	NA	12	7	7	8	7	NA	6	7
Streptomycin	16	17	15	15	14	11	20	16	11

^a *Serratia marcescens* I, *Escherichia coli* II, *Klebsiella pneumoniae* III, *Proteus vulgaris* IV, *Salomonella typhi* V, *Pseudomonas aeruginosa* VI, *Pseudomonas fluorescens* VII, *Staphylococcus aureus* VIII, *Bacillus subtilis* IX. NA: No activity

[#] Values are diameter of zone of inhibition (mm) and average of three replicates.

nella typhi, *Pseudomonas aeruginosa*, *Pseudomonas fluorescens*, *Staphylococcus aureus*, and *Bacillus subtilis* using Kirby-Baur method¹⁰. The bisthioureas and bisthiazoles however showed only moderate antibacterial activity (**Table 1**).

Experimental Section

Melting points are uncorrected and were determined in an open capillary method using an immersion-bath of silicone oil. The IR spectra were recorded on a AVATAR 330 FTIR spectrophotometer. The ¹H NMR spectra were recorded on JEOL DRX 300 or DPX 300 and Perkin-Elmer R-32 NMR spectrometers. JEOL SX 102 and DA-6000 mass spectrometers (using Argon/Xenon as the FAB gas and *m*-nitrobenzyl alcohol as the matrix) were used to record the FAB Mass spectra. All new compounds gave satisfactory C, H and N analysis (SAIF, Kochi or CDRI, Lucknow).

Preparation of [N,N'-bis(N-benzoylthiocarbamoyl)-N,N'-bis(benzyl)]ethane-1,2-diamines **4a-h**

To a stirred solution of benzoyl chloride (0.01 mole, 1.2 mL) and tetra-*n*-butylammonium bromide

(TBAB, 0.2 g) in benzene (10 mL), aqueous potassium thiocyanate solution (11 mL, 33%) was added drop wise and the mixture was further stirred for 30 min. The aqueous layer was removed by a Pasteur pipet and the benzene layer was dried with anhy. calcium chloride and decanted. Subsequently, *N,N*'-bis(benzyl)ethane-1,2-diamine (0.005 mole) in benzene (5 mL) was added to the above solution of benzoyl isothiocyanate during 2 hr under stirring. The reaction-mixture was then diluted with petroleum ether (3-5 mL). The colourless [N,N'-bis(N-benzoylthiocarbamoyl)-N,N'-bis(benzyl)]ethane-1,2-diamines **4a-h** so obtained was washed with petroleum ether and crystallized from ethanol-water or DMF-water mixtures.

[N,N'-Bis(N-benzoylthiocarbamoyl)-N,N'-bis(benzyl)]ethane-1,2-diamine **4a**: (75%), m.p. 140-42°C; IR (KBr): 1600 cm⁻¹; ¹H NMR (DMSO-*d*₆, 90 MHz): 3.69, 4.17, 4.60, 4.93, 5.45 (m, 8H, 4CH₂), 6.8-8.1 (m, 20H, ArH); FAB MS *m/z* 567 (MH⁺); Calcd. for C₃₂H₃₀N₄O₂S₂: C, 67.81; H, 5.33; N, 9.88. Found: C, 67.70; H, 5.29; N, 9.78%.

[N,N'-Bis(N-benzoylthiocarbamoyl)-N,N'-bis(2-hydroxybenzyl)]ethane-1,2-diamine **4b**: (71%), m.p. 175-78°C; IR (KBr): 1600 cm⁻¹; ¹H NMR (DMSO-*d*₆, 90 MHz): 3.80, 4.20, 4.57, 4.77, 5.22 (m, 8H), 6.4-8.1 (m, 18H, ArH), 9.6 (s, 2H, ArOH), 9.8 (broad, 2 NH); FAB MS *m/z* 599 (MH⁺); Calcd. for C₃₂H₃₀N₄O₄S₂: C, 64.18; H, 5.05; N, 9.35. Found: C, 64.02; H, 5.10; N, 9.29%.

[N,N'-Bis(N-benzoylthiocarbamoyl)-N,N'-bis(4-methoxybenzyl)]ethane-1,2-diamine **4c**: (76%), m.p. 173-75°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (DMSO-*d*₆, 90 MHz): 3.73 (m, 8H, 2MeO+2H), 4.10, 4.47, 4.83, 5.23 (m, 6H), 6.5-8.1 (m, 18H, ArH); FAB MS *m/z* 627 (MH⁺); Calcd. for C₃₄H₃₄N₄O₄S₂: C, 65.14; H, 5.46; N, 8.93. Found: C, 65.02; H, 5.43; N, 8.88 %.

[N,N'-Bis(N-benzoylthiocarbamoyl)-N,N'-bis(4-methylbenzyl)]ethane-1,2-diamine **4d**: (85%), m.p. 168-70°C, IR (KBr): 1640 cm⁻¹; ¹H NMR (CDCl₃, 90 MHz): 2.31 (s, 6H, CH₃), 3.73, 4.13, 4.50, 4.90, 5.30 (m, 8H), 6.8-8.1 (m, 18H, ArH); FAB MS *m/z* 595, (MH⁺); Calcd. for C₃₄H₃₄N₄O₂S₂: C, 68.65; H, 5.76; N, 9.42. Found: C, 68.59; H, 5.75; N, 9.49%.

[N,N'-Bis(N-benzoylthiocarbamoyl)-N,N'-bis(4-dimethylaminobenzyl)]ethane-1,2-diamine **4e**: (82%), m.p. 175-77°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (DMSO-*d*₆, 90 MHz): 2.87 (s, 12H, NMe₂), 3.73, 4.13, 4.37, 4.77, 5.13 (m, 8H), 6.8-8.0 (m, 18H, ArH); FAB MS *m/z* 653 (MH⁺); Calcd. for C₃₆H₄₀N₆O₂S₂: C, 66.22; H, 6.17; N, 12.87. Found: C, 66.09; H, 6.19; N, 12.86%.

[*N,N'*-bis(5-benzoylthiocarbamoyl)-*N,N'*-bis(1-phenylethyl)]ethane-1,2-diamine **4f**: (74%), m.p. 178-81°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 90 MHz): 1.63 (m, 6H, CH₃), 3.57-4.10 (m, 6H), 7.1-8.2 (m, 20H); FAB MS *m/z* 595 (MH⁺); analysis calcd. for C₃₄H₃₄N₄O₂S₂: C, 68.65; H, 5.76; N, 9.42. Found: C, 68.55; H, 5.69; N, 9.79%.

[*N,N'*-bis(5-benzoylthiocarbamoyl)-*N,N'*-bis[1-(4-chlorophenyl)ethyl]]ethane-1,2-diamine **4g**: (72%), m.p. 220-22°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 90 MHz): 1.60 (m, 6H, CH₃), 4.0-4.13 (m, 6H), 7.1-7.9 (m, 18H), 9.0 (b, 2NH); FAB MS *m/z* 663 (MH⁺); Calcd. for C₃₄H₃₂Cl₂N₄O₂S₂: C, 61.52; H, 5.20; N, 8.44. Found: C, 61.40; H, 5.17; N, 8.40%.

[*N,N'*-bis(5-benzoylthiocarbamoyl)-*N,N'*-bis[1-(4-methoxyphenyl)ethyl]]ethane-1,2-diamine **4h**: (62%), m.p. 176-8°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 90 MHz): 1.63 (m, 6H, CH₃), 3.73-3.93 (m, 12H), 6.7-7.9 (m, 18H); FAB MS *m/z* 655 (MH⁺); Calcd. for C₃₆H₃₈N₄O₄S₂: C, 66.02; H, 5.84; N, 8.55. Found: C, 65.91; H, 5.82; N, 8.64%.

Preparation of [*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(benzyl)]ethane-1,2-diamine **5a-h**

[*N,N'*-bis(N-benzoylthiocarbamoyl)-*N,N'*-bis(benzyl)]ethane-1,2-diamines **4a-h** (0.05 mole) and phenacyl bromide (0.1 mole, 0.2 g) in acetone (3 mL) were refluxed for 5 hr and the reaction-mixture was kept aside for 2 hr. Light yellow crystals of [*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(benzyl)]ethane-1,2-diamines **5a-h** separated which were filtered and dried. The crude sample was recrystallised from ethanol-water or DMF-water mixtures.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(benzyl)]ethane-1,2-diamine **5a**: (74%), m.p. 200-03°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.88 (s, 4H, CH₂-CH₂), 4.71 (s, 4H, CH₂Ar), 7.05-7.45 (m, 30H, ArH); FAB MS *m/z* 767 (MH⁺); Calc. for C₄₈H₃₈N₄O₂S₂: C, 75.16; H, 4.99; N, 7.30. Found: C, 75.05; H, 4.93; N, 7.26%.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(2-hydroxybenzyl)]ethane-1,2-diamine **5b**: (75%) m.p. 179-81°C IR (KBr): 1590 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.85 (s, 4H, CH₂-CH₂), 4.65 (s, 4H, CH₂Ar), 6.7-7.5 (m, 28H, ArH); FAB MS *m/z* 799 (MH⁺); Calcd. for C₄₈H₃₈N₄O₄S₂: C, 72.15; H, 4.79; N, 7.01. Found: C, 72.08; H, 4.73; N, 7.07%.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(4-methoxybenzyl)]ethane-1,2-diamine **5c**: (70%) m.p. 180-82°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 3.76 (s, 6H, OCH₃), 3.83 (s, 4H,

CH₂-CH₂), 4.55 (s, 4H, CH₂Ar), 6.78-7.85 (m, 28H, ArH). FAB MS *m/z* 827 (MH⁺); Calcd. for C₅₀H₄₂N₄O₄S₂: C, 72.61; H, 5.11; N, 6.77. Found: C, 72.46; H, 5.08; N, 6.78%.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(4-methylbenzyl)]ethane-1,2-diamine **5d**: (87%) m.p. 190-93°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 2.30 (s, 6H, CH₃), 3.91 (s, 4H, CH₂-CH₂), 4.60 (s, 4H, CH₂Ar), 6.72-7.43 (m, 28H, ArH); FAB MS *m/z* 795 (MH⁺); Calcd. for C₅₀H₄₂N₄O₂S₂: C, 75.53; H, 5.32; N, 7.04. Found: C, 75.40; H, 5.29; N, 7.07%.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(4-dimethyaminobenzyl)]ethane-1,2-diamine **5e**: (76%) m.p. 264-66°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 2.92 (s, 12H, NMe₂), 3.81 (s, 4H, CH₂-CH₂), 4.51 (s, 4H, CH₂Ar), 6.7-7.5 (m, 28H, ArH); FAB MS *m/z* 853 (MH⁺); Calcd. for C₅₂H₄₈N₆O₂S₂: C, 73.20; H, 5.67; N, 9.85. Found: C, 73.12; H, 5.64; N, 9.89%.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis(1-phenylethyl)]ethane-1,2-diamine **5f**: (77%) m.p. 225-28°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.70 (d, 6H, CH₃), 3.81 (s, 4H, CH₂-CH₂), 5.03 (q, 2H, CH), 6.7-7.5 (m, 30H, ArH); FAB MS *m/z* 795 (MH⁺); Calcd. for C₅₀H₄₂N₄O₂S₂: C, 75.52; H, 5.29; N, 7.05. Found: C, 75.39; H, 5.24; N, 7.07%.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis[1-(4-chlorophenyl)ethyl]]ethane-1,2-diamine **5g**: (72%) m.p. 155-56°C, IR (KBr): 1700 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.65 (d, 6H, CH₃), 4.12 (s, 4H, CH₂-CH₂), 4.80 (q, 2H, CH), 6.4-7.5 (m, 28H, ArH); FAB MS *m/z* 863 (MH⁺); Calc. for C₅₀H₄₀Cl₂N₄O₂S₂: C, 69.51; H, 4.66; N, 6.48. Found: C, 69.40; H, 4.64; N, 6.49%.

[*N,N'*-bis(5-benzoyl-4-phenylthiazol-2-yl)-*N,N'*-bis[1-(4-methoxyphenyl)ethyl]]ethane-1,2-diamine **5h**: (70%) m.p. 180-81°C, IR (KBr): 1600 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 1.78 (d, 6H, CH₃), 3.67 (s, 4H, CH₂-CH₂), 3.81 (s, 6H, OCH₃), 5.12 (q, 2H, CH), 6.51-7.44 (m, 28H, ArH); FAB MS *m/z* 855 (MH⁺); Calc. for C₅₂H₄₆N₄O₄S₂: C, 72.99; H, 5.42; N, 6.55. Found: C, 72.82; H, 5.38; N, 6.49%.

References

- Wright D & Usher L, *Curr Org Chem*, 5, 2001, 1107.
- Noack A, Schroder A & Hartmann H, *Dyes Pigments*, 57, 2002, 131.
- Martin-Cantalejo Y, Saez B, Soto J, Villa M J & Brana, M. F, *Synthesis*, 2003, 2211.

- 4 Badorc A, Bordes M F, de Cointet P, Savi P, Bernat A, Lale A, Petitou M, Maffrand J P & Herbert J M, *J Med Chem*, 40, **1997**, 3393.
- 5 Rudolph J, Theis H, Hanke R, Endermann R, Johannsen L & Geshke F U, *J Med Chem*., 44, **2001**, 619.
- 6 Sengupta S, Smitha, S L , Thomas N E, Santoshkumar T R, Devi S K C, Sreejalekshmi, K G & Rajasekharan K N, *Br J Pharmacol*, 145, **2005**, 1076.
- 7 Davis P D , Hallam T J, Harris W, Hill C H, Lawlon G, Nixon J S, Smith J L, Vesey, D R & Wilkinson S E, *Bioorg Med Chem Lett*, 4, **1994**, 1303.
- 8 Gringauz, A. *Introduction to Medicinal Chemistry: How Drugs Act and Why*, Wiley-VCH Inc, **1997**, 325.
- 9 (a) Devi S K C & Rajasekharan K N, *Synth Commun*, **2002**, 32, 1523; (b) Binu R, Deepa S & Rajasekharan K N, *Synth Commun*, 28, **1998**; 3625. (c) Binu R, Thomas K K, Jenardanan, G C & Rajasekharan K N, *Org Prep Procedures Intl*, 30, **1998**, 9; (d) Jenardanan G C, Francis M, Deepa S & Rajasekharan K N, *Synth Commun*, 27, **1997**, 3457.
- 10 James GC & Natalie S, *Microbiology A Laboratory Manual*, 4th edn. Addison-Wesley, **1999**, 254.